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ABSTRACT

The Nevanlinna characteristic of the derivative of

a meromorphic function quasi-bounded in the unit circle

is studied, and also a contribution is made towards the

elucidation of the comparison of the characteristic of

an entire function with its maximum modulus. Solutions

are given to two of the problems raised by members of the

Colloquium on Classical Function Theory at Cornell

University, 1961. Finally proofs are given of a theorem

on lacunary Fourier series, improving a result due to

Tomi6, and of a theorem on rearrangement of series,

related to a result due to Agnew.

PUBLICATIONS

Arising out of the work done under the grant, the

following articles have been accepted for publication:

"A problem on bounded analytic functions"
by P. B. Kennedy (Proc. Amer. Math. Soc.);

"Note on Fourier series with Hadamard gaps"

by P. B. Kennedy (Journal London Math. Soe.);

and the following article has been submitted for

publication:

"On the derivative of a quasi-bounded function"

by P. B. Kennedy (Quart. J. Math. Oxford).
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§ 1.1. Let f(z) be meromorphic for Izi < 1, and for

0 < r < i define 21T

m(r,f) = (2,Y)- I log + lf(rei )da,

0

r

1'(r,f) = t,f) - n(O,f)) dt/t + n(Of) log r,

0

where n(tf) is the nurtber of poles of f in I zf. t, each

pole counted a number of times equal to its multiplicity.

The function

T(r,f) = m(r,f) + r(r,f)

is called. the Levanlinna characteristic of f. Our object

is to discuss the rate of growth of T(rf') subject to

the restriction

T(r,f) = O(1) as r tends to 1. (1.1.1)

Functions f satisfying (1.1.1) are called quasi-

bounded. 'Every bounded regular function is quasi-bounded,

but of course the converse is false in general: in fact

(bibl. n, page 133) f is-qu.si. -bounded if. and only if,

f is the auotient of two bounded rfc .

The question, whether the derivative of a quasi-bounded

function is itself quasi-bounded, was raised by

Yevanlinna (bibl. 0, page 138), who attributed it to

Bloch. I any functions are now known which answer this

question in the negative even for bounded regular f).

The earliest example is due to Frostman (bibl. ); for

other examples see ?, 11). If f is bounded (and so

regular), it is elementary that

f,(z) = O(1)/( - Izi),

so that
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T(r,f') = m(r,f') < - log (1 - r) + O(1);

and I have shown (bibl. 7, Theorem IV) that, if p(r) tends

to infinity as r tends to 1, then there is a bounded

regular f such that

T(r,f') > - log (1 - r) - p(r) (1.1.2)

on a seauence of r tending to 1. Questions which now arise

naturally are: does (1.1.1) imply

T(r,f') + log (1 - r) -1 - co? (1.i.3)

and if so, then, given p(r) tending to infinity as r tends

to 1, can (1.1.2) hold for some quasi-bounded f and all

sufficiently small 1 - r ? A question closely related to

the second of these is the following, proposed by

members of the Colloquium on Classical Function Theory

at Cornell University, 1961 (bibl. 3, problem 5):

"Is there a bounded analytic function defined in

jzj < 1 such that

N(r,l/f')/(-log(l-r)) -- ) 1 as r- 1 ? (1.1.1)

Can such an example be constructed as a gap series

fck zn  -o"

In this chapter I answer these and some similar

questions.

§ 1.2. In fact (1.1.1) does imply (1.1.3). This is

a consequence of Theorem I, proved below; but it seems of

interest to give first a proof involving the use of

Fatou's theorem. If a is real denote by S(a) the "Stolz

region" which is the part of jzj < 1 where

larg (1 - ze-ia)j I TT /A.

We then have the following well-known form of Fatou's

theorem.

LFhLA 1. Let w(z) be revulEr and bounded in z e 1.

Then lim w(z) xists for almostf all a2 Az tends to eia

in S(O); and for fixed a the conver=ence is uniform with
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respect to arg z Is_ z tends to e i aS(a).

We deduce

LEMMA 2. With the hypothesis of Lemma 1,

(1 - r) w'(re'a) tends to 0 boundedly for almost all a.

To prove Lemma 2, fix any a such that L(a), the limit

of w(z) as z tends to eim in S(m), exists. It is plain

that there is ni absolu+e constant 6 > 0 such that, as

soon as r > J, S(a) contains the closed disc with centre reia

, and radius 6(1 - r). Let e > 0 be given; then we may

choose r > -21 so that jw(z) - L(a)j < e for all z
0

satisfying

1z - releI < &(1 - r), ro < r < 1.

Hence for ro < r < 1, by Cauchy's inequality for w'(z),

1w,(reiQ)I (d/dz)(w(z)-L(a))I z ( /((l-r))

Because 6 > 0 is an absolute constant and e > 0 is

arbitrary, it follows that wt(reia) = o(l)/(1 - r);

and this is true for almost all a because L(m) exists

for almost all a by Lemma 1. Moreover since w is bounded

we have w'(re") = 0(1)/(1 - r) uniformly with respect

to a. This proves Lemma 2.

We note also the following inequality (bibl. 1h,

page 207, footnote).

LE'llA 3. Let a(x) be a positive function integrable

over (ab). Then

1 b 
b

(b-a)- Jlog u(x) dx log ((b-a)l a u(x) dx)

Suppose now that f is quasi-bounded, so that

f = g/h, where g and h are bounded in Izg < 1. Since

' = (g'h - gh')/h
2,

we have easily

If'I 1 (1g'1 + h' ) (IgI + Ih )/Ih21,

and so, because g/h2 and 1/h are quasi-bounded,
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1M(r,f') < (2rr- og (1+g()rel-)l+lre1 ) da

0
+ 0(1).

Hence by. Lemma 3 there is a constant A such that

2 7

exp m(rf') < A I (1 + 1g'(reiQ) + jh,(re)I ) d.

0

By Lemma 2 and the theorem of bounded convergence (bibl. 12,

page 337) the integral on the right is o(1)/(1 - r),

and so m(r,f') + log (l-r) tends to - oo. But by

(1.1.1) and (1.2.1),

N~r,f') -< 2N~r,f) < 2T(r,f) = 0(1)9

and so T(r,f') < m(r,f') + 0(l). This proves (1.1.3).

§ 1.3. Although it seemed worthwhile to present the

argument of § 1.2, there is in fact a simpler and yet

stronger argument.

THEOREM I. Let f be quasi-bounded in z < 1. Then

1

i (1 - r) exp 2T(rf') dr < co. (1.3.1)

Proof. As before, f = g/h where g and h are bounded

regular functions. By (1.2.1)

If'l < ((Igi+lhl)/1h 2 1 ) max (Ig' , jh' ),

and so
if!2, 2+ 2 2)

If 1 2 (1g,12+ jh't ) (1g, +jh )2/IhI4

Since g2 /h4-, g/h3 and 1/h2 are quasi-bounded, it

follows that 2T(r,f') < 2m(r,f') + 0(1)

2 T

< (2 )- f log (I +Ig'(re i)I2 +h'(rei)12 ) do,
0

+ 0(1).

Employing Lemma 3 again we find that there are



constants A, A' .such that

2'lr
exp 2T(r,f-1) < A I+ l g I reia)l 2 'C I re;L)J2. -a

00

= A' (1 + E n 2 (Ign 2  hn2 )r2n2)

where gn' hn are respectively the nth Taylor coefficients

of g, h at z = 0. If we now multiply by 1 - r and

integrate from 0 to 1 we got (1.3.1), since

Z IgnI < o , Y h 21 <

because g and h are bounded. This proves Theorem I.

From Theorem I we deduce (1.1.3) as an easy

corollary. In fact, let E > 0 be given; tlL.fn for all

small enough 1 - r, from (1.3.1) and the fact that T

increases with r (bibl. 8, page 7), we get

J(l+r)

> f (1 - t) exp 2T(tf') dt

r

2
> (1/)) (1 - r) exp 2T(r,f'),

and (1.1.3) follows at once from this.

§ 1.2. It is plain from Theorem I that, for an

arbitrary P(r) t1iding to infinity, we cani
, have (1.1.2)

for some quasi-bounded f and all small enoug 1 - r: for

example, if P(r) = - log (- log (l-r)), the, (1.1.2)

(for all sufficiently small 1 - r) would cc;>' :dict

(1.3.1). Our object now is to show that Theorem I is,

in fact, in a sense best-possible.

THEOREi, II. Let B(r) be Dositive and incr fing

in (0,1), and satisfy

(1 - r) exp B(r) decreases as r increases, (1.4.l)

B(r') - B(r")- co as (1-r')/(l-r") -1 ,(1.1+.2)
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U - r) exp 2B(r) dr < co. (i..3)

Then there exists a function f, regular and quasl-

bounded in Iz < 1, such that

T(rf') = m(r,f') > B(r) (1.h.4)

for all sufficiently small 1 - r.

The class of functions B considered is fairly wide;

we note, for example, that (1.1:.l) and (1.11.2) are

satisfied if B is continuously differentiable and

satisfies, for some constant c > 0,

c/(l - r) < dB(r)/dr < 1/(1 - r).

To prove Theorem II we obsorve first that, if the

range of integration is (1 - 2-k , 1 -2 "k l )

f(l-r) exp 2B(r) dr > 2 2k -2 exp 2B(l - 2-k);

here we have used the facts that B(r) increases with r

and that the length of the range of integration is 2-k-
l .

By summing over k = 0, 1, 2,... and using (1.4.3) we get

2 k exp 2B(1 - 2 k ) < oo.

It is easy to infer from this that we may then choose y(k),

a function taking only integer values greater than 2 and

increasing to infinity as k tends to infinity, so that

Z y(k)2 2"2k exp 2B(. - 2
"k) < oo, (l.h.5)

and

y-(k+l)/y(k) tends to 1. (1.1.6)

Define the sequence of integers nk by

nI = l, nk+l = y(k)nk (all k > 0). (1.4.7)

In particular nk+l > 2k, and so by (1.4.1)

nk+l "1 exp B(l - nk+l " ) < 2 k exp B(l - 2 k)

If we multiply by ((k), square and use (1.4.5) and (1.4.7)
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we get

Z nk- 2 exp 2B(1 - nk+l) < CO.

Now put 00

f(z) = ck zn k (1.4.8)

where ck = e2 nk-I oxp B(l - nk+ ll). Since

, Ck < 0o9

f is regular in the unit circle and it is easy to

deduce from Lemma 3 that f is quasi-bounded.

The proof of (1.4.2) depends on the following

lemma, which is very easy to prove.

LEIAiA )+. If sk '-_ rositive for ill k and Sk/Sk+1

tends to 0 as k trnds to iinfini t ,.A

k-I 0o

K- = oi sj "1/_ sj ) = O(ck) ).

1 k+l

Lemma 4 gives at once

k-l
Z cjj = O(Ckk),(1.4.9)

injO(ckn,

because

(clnk)/(ck+ink+l) = exp (B(l-nk+l I ) - B(l-nk+2
" ) ),

which tends to 0 by (1.24.2) and (1.4.7). Also

co G

,> cjnj (l - nk" ) < 2nk2  cj/nj ( 1.1C)

j=k+l k+l

by the inequality (1 x)n< e n x < 2(nx) "2  which holds

for n > 0 and 0 < x < 1. But

(nk/ck) / (nk+l/ck+l )

= y(k)-2 exp (B(I-n+2"1 ) - B(l-nk+7'l) ),

and by (1.4.1) and (1.4.7) it follows that
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(nk/ck) / (nk+l/ck+l) $ r(k+l)/y(k) 2,

which tends to 0 by (1,4.6). Therefore by (1.4.i10)

and Lemma 4,

L cjnj(l - nkl)n j = O(Cfknk). (1.4.11)

k+l

Now 00

and for z on the circle with centre 0 and radius 1-nk'l-

(1.4.9) and (1.4.l1) tell us that this series is

essentially dominated by the term

cknk(l - nk-l)nk

so that on this circle

Ir,(z)1 > (e"I - o(l)) ck n - o(ck c).

Hence if k is large enough we have, by definition of cks

m(l - nklf') > B(l - nk+l l).

Since m and B are increasing functions of r we have

then, for 1 nkl < r < I -nk+l I

m(r~f') > m(l-n,,'l,fl) > B(l-n k+l'l) > B(r).

It follows that (i..) is true for all small enough

1 - r, and this proves Theorem II.

§ 1.5. Theorem II shows Theorem I to be sharp for

Quasi-bounded functions, but perhaps not for bounded

functions. It seems of some interest that the construction

used in Theorem II, depending as it does on lacunary

power series, is essentially incapable of showing

Theorem I best-possible for bounded f. In fact, for

bounded functions with lacunary Taylor series round z=0,
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we have the following stronger result.

THEOREN III. SuDpos2 that the seauence of

positive integers nk satisfies, as k tends to infinity,

lim inf nk+i/nk > 1, (1.5.1)

and that the function (14..8) is regular and bounded

in the unit z-circle. Then

exp T(r,f') dr < co. (1.5.2)

0

To prove Theorem III we observe that the real and

imaginary parts of
in ka

are Fourier series of bounded functions of a (bibl. 16,

page 86), and so by a theorem of Szidon (bibl. 16,

page 139), (1.5.1) implies

L Vkd < co. (1.5.3)

(1.5.2) follows from (1.5.3) by a simple argument

involving the use of Lemma 3, and this proves Theorem III.

(1.5.2) is stronger than (1.3.1) of course; for

example (1.5.2), but not (1.3.1), would be contradicted

if we had T(r,f') > -log(l-r) - log (-log(l-r)) for all

small enough 1 - r. There is an analogue of Theorem

III as follows.

THEOREM IV. Let B(r) be positive and increasing

in (0,1), and satisfy (l.b.l). (1.4.2) and

1

Iexp B(r) dr < oo. (1.5.)

0

Then there exists a f unction f, regular and bounded n

the unit z-gircle. having a Taylor series of the form

(l.b.8) with nk+i/nk tending to infinity, and

satisfying (1.4.4) for all sufficiently small 1 - r.
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The proof is very similnr to that of Theorem II.

We easily show from (1.5A.) that

2- exp B(1 - 2 cot

and so we may choose y(k) as in §1.4, taking only integer

values greater than 2 and tending to infinity with k,

to satisfy

Zr(k) 2 "1 exp B( - 2 -k) < o

and (1.1.6). Define nk, ck and f(z) as in §1.4.

Then E ck < ooand so f is bounded; and by (1..7)

nk+i/nk tends to infinity with k. The proof of (1.14 4)

proceeds as in §1.4 with minor differences, and

this proves Theorem IV.

It is now natural to ask: is (1.5.2) true for all

bounded f, even without the gap hypothesis (1.5.1)?

The methods used here are insufficient to answer this,

but I hazard the conjecture that the answer is "no".

§ 1.6. The last question referred to in §1.1 is,

in effect, answered in the affirmative by Theorem IV.

We look more closely at this special case in the

following theorem.

'Pu-fP M V. Suppose that

Ick/Ick+1 tends to 1, (1.6.1)

and that the seguene of yositive in QktSe.Ks nk aifi

nk+l/nk tends to infinity, (1.6.3)

(log nk+l) / (log nk) tends to 1. (1.6.4.)

Define f by (1.4.8). Then f is regular and bounded in

the unit z-circlo, and (1. 1 ) is true.

On the other hand. suppose that ck satisfies only
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Ck = 0(l) kp  (1.6.5)

for some fixed p, that (1.5.) holds and that (1.6,1)

is false. Define f by (1.4.8), Then (1.1.4) is false.

The point of the second part is that it shows, for

lacunary series, the essential part played by (1.6.14)

in producing the behaviour (1.1.4).

Theorem V is proved by estimates very similar to

those in the proofs of Theorems II and IV. To prove

the first part we note first that f is a bounded

regular function by (1.6.2). Put

rk = exp (-l/nk). (1.6.6)

Then for all k and all real a,

If'(rcei a)I > enlJcknk - SI  - S2

where k-i ooT-" nj

Si = tcjtnj , S2  = 4.__ jcjlnj rk J.

From (1.6.1), (1.6.3), (1.6.6) and Lemma 4 the estimates

S1 , S2  = o( ckl nk)

follow easily. Moreover from (1.6.1) we get log ck

= O(k), and k = o(log nk) from (1.6.3), so that

log Ickl = o(log nk).

Thus

log IfI(rkeia)I > (1 - o(i)) log nk

uniformly with respect to a; and noting that

f,(rkeia) = 0(1)/(l - rk) = O(nk)

by (1.6.6) and the fact that f is bounded, we get

log If,(rkea)I = (U + o(1)) log nk

uniformly with respect to a. But (bibl. 12, page 249)
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21

N(r,1/f,) = (2 )1 log If,(ro d+ 0(l),

0

and so

F(r,,1/f') (1 + 0(1)) log nk.

From this (1.1..) follows, because N is an increasing

function of r and because the expressions

log nk, - log (l-rk), - log (l-rk+I )

are all asymptotic to one another as k tends to infinity,

by (1.6.) and (1.6.6). This proves the first part

of L eV.

To prove the second part we suppose that, in

contradiction of (1.6)4), there exist a fixed > 1

and infinitely many Ic such that

nk+l > N . (1.6.7)

Put tk = exp (-li/nkO) for some (temporarily fixed) 0

with 1 < 0 < u. Then for z on the circle with centro

0 and radius tk, we have by (1.6.5)

( k 00

W = O(1) Z jPnj + JP njtk
SJ=l k+l3

7sing (1.6.3) we can show that the first sum on the

r.zht is

O(1) nkl+6 for every c > 0,

and that the second sum is bounded for all k for which

(1.6.7) is true. It is easy to conclude that, for

every e > 0 and all large enough k for which (1.6.7)

is true,

N(tkl/f') < .- 1 (1 + C) log (U - tk).

Since p is also arbitrary in (1,6) we deduce that

lim inf N(r,l/f')/(-log (1 - r))

is at most 1/6, which is less than 1. Thus (1.11.) is
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false, and this completes the proof of Theorem V.

§ 1.7. To end this chapter we show that a method

used in Theorem V suffices to show the accuracy of a

result of Bliernacki (bibl. 2, page 101). Biernacki

shows that. if the function f, regular in the unit z-

circle, satisfies as r tends to 1

lim inf T(r,f)/(-log(l - r)) = e,

then lim sup T(r,f')/T(r,f) 1 + 1/c

as r tends to 1 outside a set of intervals over which

th~etotnl variation of - log (1-r) is finite, We Drove

LAREA VI. Let c be given (0, finite and positive,

or co). Then there exists f, regular in the onit z-

circle and satisfying, aL r tends to 1,

T(r,f) / (- log (l-r)) tends to c,

T(r,f')/T(r,f) tends to 1 + 1/c.

In view of what has gone before, the calculations

involved in the proof of Theorem VI are straightforward

and we omit them. For the case c = 0 we need only

construct, as in Theorem II, a function f satisfying

T(rf) = 0(1), T(r,f') tends to infinity. For

finite c > 0 we may take

f(z) = nk c z nk

for a sequence of integers nk satisfying (1.6.3) and

(1.6.4); while, with the same sequence nk,

7- k nk
f(z) Z Lnk z

deals with the case c = oo. This proves Theorem VI.
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CHAPTER TWO

§ 2.1. In this chapter T(rf) again denotes the

Nevanlinna characteristic of f, but we are now concerned

with functions meromorphic in the open plane, and

especially with entire (integral) functions, For

meromorphic f the 9X= p of f is defined by

p lim sup (log T(rr))/log r

as r tends to infinity, which (bibl. 8, page 30)

coincides with the usual definition of the order of f

if f is entire. When f is entire we define, as usual,

M(r,f) to be the maximum modulus of f(z) for z on the

circle with centre 0 and radius r, and f is said to

have perfectly regular arowth if

lim r-P log M(rf) (2.1.1)

(as r tends to infinity) exists, being finite and

positive. Among the Cornell Colloquium problems

(bibl. 3, problem 2) is the followings "if f is entire

and (2.1.1) exists, does

lim r-p T(r,f) (2.1.2)

exist?" In other words, if f has perfectly regular

growth in the usual sense, does f also have perfectly

regular growth in the Nevanlinna sense? It is plain

that in considering this question we lose nothing by

taking the value of (2.1.1) to be 1.

From the inequalities

(1-k)(l+k)"1 log M(krf) < T(rf) < log M(r,f),

which are true for all k in (0,1) (bibl. 8, page 24),

we deduce easily that, if



CHAPTER TWO

§ 2.1. In this chapter T(rf) again denotes the

Nevanlinna characteristic of f, but we are now concerned

with functions meromorphic in the open plane, and

especially with entire (integral) functions, For

meromorphic f the 9= p of f is defined by

p lim sup (log T(r,f))/log r

as r tends to infinity, which (bibl. 8, page 30)

coincides with the usual definition of the order of f

if f is entire. When f is entire we define, as usual,

M(rf) to be the maximum modulus of f(z) for z on the

circle with centre 0 and radius r, and f is said to

have Derfectly regular growth if

lim r-P log M(rf) (2.1.1)

(as r tends to infinity) exists, being finite and

positive. Among the Cornell Colloquium problems

(bibl. 3, problem 2) is the followings "if f is entire

and (2.1.1) exists, does

lim r-P T(r,f) (2.1.2)

exist?" In other words, if f has perfectly regular

growth in the usual sense, does f also have perfectly

regular growth in the Nevanlinna sense? It is plain

that in considering this question we lose nothing by

taking the value of (2.1.1) to be 1.

From the inequalities
+

(l-k)(l+k) "1 log M(kr,f) < T(rf) < log 1f),

which are true for all k in (0,1) (bibl. 8, page 24),

we deduce easily that, if



- 15 -

lrm rwp log M(rf) = 1 (2.1.3)

as r tends to infinity, then

A(p) lim inf riP T(r,f)

,lim sup r'P T(rf) N 1 (2.1*.)

where

A(p) = max ( (kP-kP+l)/(lk) ) for 0 < k < 1.

By considering the value k a exp (-l/p) we find that

A(p) > (2e(l+p))"
1

for all p > 0; and more detailed calculations show that

lim A(p) = 1 as p tends to 0, (2.1.5)

lim 2ep A(p) = 1 as p tends to infinity. (2.1.6)

In this chapter I prove the following theorem.

THEOME MeI Supsqta 0 4 p < oo. Thenl there

exists an entire function f satisfving (2.I.) nd,

&I r tends to infinity.

lir sup r'P T(rf) l 1, (2.1.7)

lim Inf r-P T(r,f) 4< y(p), (2.1.8)

y(p) = ( p)-1 sin ,fp (0 < p < ),

Y(P) g ( TTp)-l (p : 1).

Since y(p) < I this answers "no" in general to the

question raised above; and, with (2.1.5) and (2.1.6)g

it also shows that the lower bound for r-P T(rf) in

<.i.') is roughly o -the correct order as regards it3

dependence on p.

2,2. To prove Theorem VII we need two lemmas.

Lth 5. mJA Q= 0 < P C AMU

the An&Mlar domain



-< arg z < 6 = min ( T, /(2p)).

Then there exists an entire function g(z) stif

Ig(z)A < 1 for all z outside D, if p>j or p=j, (2.2.1)

log g(r) = rp  + O(log r) (2.2.2)

as r tends to inflinity. and

log ig(reia)l < rp cos pa (2.2.3)

for all reia inD with r > 2.

Lemma 5 is, in effect, known. When p is at least j

the lermm is a special case of a theorem of tho present

wr'tcr (bibl. 5, Theorem II); we note that (2.2.3),

though not included in the statement of that theorem,

is an easy consequence of Lemma 11 of (bibl.5). When

0 < p < j we make use of the function

CO

W(z) (+ z/n/P).

1

For this function Wiman (bibl. 15) obtained (even for

0 < p < 1) the asymptotic statements, as r tends to oo,

log W(r) = 7 cosec NTp. rp  + O(log r),

log W(roia)( < iTcosec up. rp cos pa + O(log r)

uniformly with respect to a. It is therefore easy to

see that, if p > 0 satisfies

r[pP cosec TTp = 1,

then a positive integer N may be chosen so that

c

g(z) = ( z/nI / p

N

has the properties (2.2.2) and (2.2.3).

LEN1AA 6. Uf 0 < p < co, then there exists anentire

function h(z) satisfving. uniformly with respect to al

jh(rei)l < (2 + o(i)) exp (rp ) (2.2.4)
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AL r tends to infinity, while there 're seauenoes

rn and tn tending to infinity with 1 t

lh(rnl&l )I > (1 0(l)) exp (rnp)t (2.2.5)

Ih(%nei")l < exp (o(tnP), (2.2.6)

A& n tends to infinitV.

For the proof of Lemma 6 it is convenient to

introduce temporarily the notations

q l/p, (p.2.7)

sn  M n1 = n(n-l)(n-2).,.3.2.l. (2.2.8)

Put

h(z) Z= (eqpqz/snq) sn

n1l

0 Un(z), 
say.

When

(qsn 1 )q .< r 4 (qsn)q (2.2.9)

the power series is essentially dominated, on the

circumference with centre 0 and radius r, by the two

terms un.l(z) + un(z). To see this we note first that

if r, the modulus of z, satisfies (2.2,9), then by

(2.2.7) and (2°2.8)

I uj(z) $4. (n/ 83 )q = (9/n)
n+l an+ . jfn+l

&nd so

n .uj,) = o(l), (22,10)

Furtherl because (Nqpq1/mq)m increaseg with m aS long as

mq < pqr, we have, when 121 = r satisfies (2.2.9),

n-2

jUj(Z) n(e q pr/sn.2q)
sn 2
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and this is less than

n (en2)
qsn -2

because

pqr/sn-2
q < n2q

by (2.2.7), (2.2.8) and the right-hand inequality of

(2.2.9). Again by the left-hand inequality of (2.2.9),

qsn-2 < rP/(n-l),

and so
n-2

n-2I uj(z)I < n (en2)rP/(n1)

< n~r p / (n - 1 )  = exp ( (4rPlog n)/(n-1) )

Hence

n-2

l uj(z)) < exp (o(rP)). (2.2.11)

And now, when r, the modulus of z, satisfies (2.2.9),

we got by (2.2.10) and (2.2.11)

Ih(z) - un l(z) - un(z)l < exp (o(rP)), (2.2.12)

which justifies our assertion regarding the essential

domination by two terms of the power series defining O(z).

For all m we have

(eq pqr/mq)m < exp (rP),

and (2.2.4) follows at once from this and (2.2.12).

Put

rn = (qsn)q.

Then r = rn satisfies (2.2.9), and by (2.2.7) and (2.2.8)

lun(rnel)I exp (qsn ) = exp (rnP)t

un..l(rneia)I = un.l(rn) = (qsn q/Snl5 q)sn -l

(en)q sn -I < n = exp (o(rnP)),
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and so (2.2.5) follows easily from (2..22Y.

Similarly if we put

tn  = (qsn)q n-q

then r = tn satisfies (2.2.9), and for Izj = t n

Un-l(Z)I  =Un.l(tn) < exp (o(tnP)),

Iun(z)I = Un(tn) = o(i).

Hence we get (2.2.6) from (2.2.12). This proves Lemma 6.

§ 2.3. We can now prove Theorem VII. Let g and

h be as in Lemmas 5 and 6, and put

f(z) = zQg(z) + h(z), (2.3.1)

where the positive integer Q is so chosen that

rQ~g(r)j > 3 exp (rP) (all r > 2);

such a choice of Q is possible by (2.2.2), and we then

have, by (2.2.4) and (2.3.1),

If(r)A > (1 - o(l)) exp (rP).

Moreover by (2.2.1), (2.2.3) and (2.2.4),

If(re"A) < (rQ + 2 + o(l)) exp (rP)

uniformly with respect to c. Hence (2.1.3) is true.

Next let 6 be as in Lemma 5, take any fixed e

satisfying 0 < e < 6, and suppose e < jcjl < 5. Then

by (2.2.3)

Ig(reica < exp (rP cos pe)

for all r > 2. Since cos pe < 1 we have therefore

(reia)Q g(reic) = o(l) exp (r).
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Hence if rn is as in Lemma 6, we have by (2.2.5)

and (2 3 - ) f(r e i)I > (1 - o(1)) exp (rnP) .

If p > then this same inequality holds for

6 4 jal A 1 by (2.2.1), (2.2.5) and (2.3.1). Hence

in any case

T(rnsf) > (2n)>i2(UZ-c) + 2(rT-6)) rnP - o~i).

Since e > 0 is arbitrarily small, (2.1.7) follows at once

from this and the extreme right-hand inequality of (2,100,)

Finally, with tn as in Lemma 6,

T(tnth) = o(tnP)

by (2.2.6); and by (2.2.1) and (2.2.3)

Hence (bibl. 8, page 11+) we have by (2.3.1)

T(tn~f) '4 T(tng) + T(tn,. + O~lo'g tn)

< y(p) tnp + o(tnp).

This proves (2.1.8) and so completes the proof

of Theorem VII.

§2.14. When I had finished the above work I was

informed by Professor W. K. Hayman that I had been

slightly anticipated by Professor A. A. G:Idberg

in answering "no" to the Cornell Colloquium questix..

stated in §2.1. 1 have not an exact reference to

Goldberg's paper. Instead of Lemma 5 he makes uxse

of properties of the Mittag-Leffler ftnction

00

EII n/r + n/p).

n =
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Moreover he uses a device different from the rather

sharp Lemma 6, lending to a weaker result than (2.1.7).

It should be mentioned that Goldberg also constructed

an example to show that, conversely, the existence of

(2.1.2) does not imply the existence of (2.1.1).

Professor Goldberg kindly called my attention,

in a letter, to a paper of Paley (bibl. 10; for the

exact reference I am indebted to Professor Hayman)

where it is shown that there are entire functions f

satisfying, as r tends to infinity,

lim inf T(r,f)/log M(rf) = 0,

and where it is also conjectured that, in general,

lim sup T(r,f)/log M(rf) >, y(p)

with y(p) as in Theorem VII. Paley states that, in

fact, this conjecture is known to be true for p < i-

and for p = i; the case p > + remains open.
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CHAPTER THREE

§ 3.1. In this chapter I turn my attention to two

problems about infinite series.

Let the L-integrable function f(x), with period 2 7T",

have the Fourier series

cO

~ (a k cos nkx + bk sin nkX) (3.1.1)
k=l

where tVia sequence of positive integers nk satisfies

lir inf nk+i/nk > 1 (3.1.2)

as k tir-ls to infirlt.-. ui,,'cJ thbatj for some fixed

xO and 0 < a < 1,

f(x o + t) - f(x o ) = o(1)lftl (3.1.3)

as t tends to zero. Tomic (bibl. 13) has shown that we

then have
-a,/(2+a)(.1)

ak, bk = 0(l) nk  (3-1.1)

I have previously (bibl. 6) shown that the hypothesis

(3.1.3), uniformly for xo on a set of positive measure,

is enough to ensure the stronger conclusion

ak, bk = 0(1) nk'a;

and I show here that Tomi6's result can be improved to

the following.

THEOREhq VIII. Let the L-integrable function f(x),

with Period 2 71 , have the Fourier series (.1.11)

satisfying (3.1.2). and su~pose that (141.3) holds

for some xo Ad a > O.

ak, bk = 0(1) (nk'l log nk)L (3.1.5)

Al k tgnds to infinity.

This, and Tomic's result, are related to theorems

due to Noble (biblo 9); and indeed Tomic's method of
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proving (3.1.4) is similar in some respects to that

used by Noble. The point of this and the next section

is that a dierct application of Noble's method is enough

to prove Theorem VIII.

It would be interesting to know whether the term

log nk in (3.1.5) can be suppressed. If this could be

done it would be an improvement, not only on Theorem VIII,

but also on Theorem I of (bibl. 6).

§ 3.2. In proving Theorem VIII we assume xo = 0;

there is no loss of generality in this.

Essentially, Noble proved

LEHIA 7. Let m be a Positive integer and

0 < b< 1' . Then there exists a trigonometric polynomial

m

T(x,m,b) = 1+ T- tj(m) cos jx (3.2.1)
j=l

such that

IT(xm,b)I < AI 1
I  (all x), (3.2.2)

jT(xjmj)j < A2m 2 "I exp (-A 3 m) 323

(b < 1Il ,s 211-6))

where Al, A2, A3 are Positive absolute constants.

The hypothesis (3.1.2) means that nk grows so

rapidly that the constant c > 0 may be chosen so small

that, if we let mk be the integer part of cnk, then

mk < min (nk - nk.l, nk+l - nk) (3.2.1)

for all large enough k. Next, put

bk = C mk- l logmk

where the constant C is chosen so large that

mk2 bk" exp (-A3Skmk) = 0(i) mk' ; (3.2.5)

such a choice of C is possible because the left-hand side

of (3.2.5) is 3 - A3 Cmk /(Clog inu).
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Let T(xmkbk) be as in Lemma 7; then by (3.2.1)

and (3.2.4) we have, for all sufficiently large k,
17

k= T7 - I f (f(x)-f(O)) T(xmkbk) cos nkx dx.

In the range -6k < x < 6k the integrand is

ci-i
0(1) ak

by (3.1.3) (with xo = 0) and (3.2.2), and so the integral

over this range is

0(1) bk.

By (3.2.3) LL;d (3.2.) the ren;zd-der of the integral is

Hence by de~:z:Dn of m. an 6k w"' get the estimate

(3.1.5) for ak. Since a similar argunent is available

for bk, this proves Thoorem VIII.

§ 3.3. In the case a = 1 Theorem VIII provides us,

of course, with a very wide class of continuous

nowhor: .differentiable functions. This may be worth

looking at more closely, since a weaker method ---

making use of a simpler polynomial than Noble's (3.2.1)

--- gives a construction which might easily be used in

the class-room. In fact, put

R(xm) = cos2M ix.

It is easy to prove by induction that R takes the form
m

R(x,m) = ro(m) + EII r (m) Cos Jx;

that

IR(xm)l < 1 (all x and m),

IR(xm)l < exp (-mb2) (0 < -fb $ lxt $T),

and

r,(m) > A+ m"
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wherrejA is a positive sbsolute constant. The use of R

instead of T in our argument, with a = 1) leads to the

estimate

ak = 0(1) mk (k 2 + exp (-mkbk2))

provided (3.2.4) is true. In particular, if we take

nk = 2k, mk=2k-2, bk2 = k2 22-k,

we get

ak = 0(1) k2 2 -+
k .

Thus, for instance, the function

f(x) = k os 2k x
k=l

is a continuous nowhero-differentiable function.

§ 3.4. I prove, finally, a theorem on rearrangement

of infinite series. Let

PI' P29 P3 1960 (3.4.1)

be a (fixed) permutation of the integers 1, 2, 3,...,

and let

n n

s(n) 2 ak, m(n) = / Papk (3.4.2)

for a (variable) real or complex series T" ak. Agnew

(bibl. 1) has shown tit the existence of lim s(n)

implies lim a(n) = lim s(n) if, and only if, the

permutation (3.4.1) has the following property% there

is an integer N such that for each n = 1,2,,... the set

(Pl, P2, "'' pr) is the union of at most N blocks of

consecutive intcj,--rs.

It seems now natural to ask the questions are there

permutations (3..1) such that lim a(n) exists whenever

lim s(n) exists (but these limits are perhaps not equal)?

The following theorem answers "no" to tis question,

by showing that if a given rearrangement preserves the
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convergence of every convergent series, then it preserves

the sum of every convergenL sericz.

THEOREN IX. ppose that ther e.xists a real or

complex scies ak such that

lira s(n) = s, lira m(n) = a $ s.

Then there exists a convergent series E bk such that

b Pk is divergent.

In the proof of Theorem IX there is :o loss of

generality in assuming that the ak are all re, l and

that a > s. Let

a- s = 36 > Os (3.4.3)

and choose sequences of positive integers Nmj rm, Om

and Ym as follows:

NJ = 1; (3.4.4)

rl > 1 so that s(rl) < s + (3.4.5)

> r so that a(pi) > a - 6, (3.4.6)

(1,2,,,,,r I )C-(PlP2,.. ,_ )
_ (3.4.7)

Y1 = max Pk for k = 1, 2, ... , ; (3.4.8)

Mnd in general, for m 2, 3,

rm > Ym-1 so that Is-s(n)l<m "3 for all n>Nm; (3.4.9)

rm > Nm so that s(rm) < s + 6; (3.4.10)

Om > rm so that a(rm) > a - , (3.4.1-)

(1,2,...,rm)CI (PIP 2,...,Pm); (3.4.12)

M- max Pk for k = 1, 2, s., Pm' (3.4.13)

For m = 1, 29 3*... put

bk = mak (k = Nm, Nm+l,.*. Nm+I 1) •  (3.4.14)

From (3.4.9) and the General Principle of Convergence

it is a simple matter to verify that the series F bk

is convergent.

Define s'(n), a'(n) by (3.4.2) with ak, aPk

replaced by bk, bpk respectively. It is clear that

(3.E. 4), (3..5),...,(3..13) define sequences of
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positive integers with the property tht, for all m,

the set of integers

(plP2,...,pm) - (l,2,...,rm)

is defined and is a subset of the set of integers

(Nm,Nm+l, ...,Nnl+l-l).

Thus by (3.4.14.),

'0m ) - s'(rm) = m (a(pm) - S(rm))t

whence by (3.4.3), (3..10) and (3.4.12),

a'(jm) - s'(r m ) > mb.

Since lim s'(rm) exists, it follows at once that

lim a'U m ) = oo, and so F-bPk is divergent. This

proves Theorem IX.
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